Product Specifications and Order Information

PWS™ BEV-100 Series Features
ONE-PIECE, INJECTION MOLDED LEXAN® HOUSING
LARGE 2½ GALLON RESERVOIR
18 GALLON-PER-DAY RO MEMBRANE
4-STAGE DEIONIZATION MODULE
PORTABLE – Easy to attach, no installation or plumbing required
SMALL FOOTPRINT – Tall, thin design optimizes countertop space
BUITEN FLUSH VALVE – Unique mechanism to periodically flush away debris that would otherwise shorten the life of the RO membrane
QUICK-CONNECT FAUCET ATTACHMENT – Heavy duty faucet coupler includes built-in purge/bypass button

Physical Specs
Dimensions: 8¾” W x 10½” H x 19” L
Weight: 15 lbs (6.8 kg)
Production: Up to 18 Gallons/Day
Every system is equipped with our unique combination prefilter to remove sediment and chlorine. All components are NSF Certified and/or FDA approved materials. Factory certified and tested at 100 PSI.

100 Series Replacement Components

PWS™ Sediment & GAC Prefilter Annually PWS-BEV100-012
PWS™ 100 Series RO Membrane 2–4 years (as needed) PWS-BEV-RO18
PWS™ Deionization Module Annually PWS-BEV-DI

Reverse Osmosis Membrane Specifications [All Systems]
Membrane Type: Spiral Wound Thin Film Composite (TFC)
Maximum Operating Temperature: 40–100˚ F (4–38˚ C)
Operating Pressure: 20–75 psi (1.4–5.2 bar)
pH Range: 2.5–11.0
TDS level, Maximum: 2000 ppm
Sulfate: <200 mg/l
Chlorine (Cl): 0.00 mg/l
Hardness (CaCO3): <425 mg/l (<25 grains/gallon)
Iron (Fe): <3 mg/l
Manganese (Mn): <0.05 mg/l
Hydrogen Sulphide (H2S): 0.00 ppm

* All PWS™ BEV Series systems are equipped with carbon prefilters to eliminate chlorine.

PWS™ BEV 300 Series Features
ANODIZED ALL ALUMINUM FRAME – Resists rust and corrosion providing a lifetime of support
TWIN UNIDIRECTIONAL CARBON PREFILTERS – Flow is lengthwise, not radial, for maximum contact time and organic adsorption
40 GALLON-PER-DAY RO MEMBRANE
4-STAGE DEIONIZATION MODULE
3 2 GALLON STORAGE TANK – High quality pressurized storage tank with an NSF approved purified water inlet of high quality stainless steel
BUITEN FLUSH VALVE – Unique mechanism to periodically flush away debris that would otherwise shorten the life of the RO membrane
REQUIRES NO ELECTRICITY

Physical Specs
Dimensions: 16¼” L x 3¼” Dia. 15” H x 11” Dia.
DI Module: Storage Tank: Weight: 32 lbs.
Production: Up to 40 Gallons/Day

300 Series Replacement Components

PWS™ Sediment Prefilter Annually (or as needed) PWS-BEV300-SED
PWS™ 300 Series RO Membrane 2–4 years (as needed) PWS-BEV-RO40
PWS™ GAC Prefilter (2) Annually PWS-BEV300-GAC
PWS™ Deionization Module Annually PWS-BEV-DI

Available Options
The following options are available directly from Pure Water Systems:

PRODUCTS
Virtually Silent 24V Booster Pump Assembly
Chlorine (Cl) – 0.00 mg/l
Hardness (CaCO3) – <425 mg/l (<25 grains/gallon)
Iron (Fe) – <3 mg/l
Manganese (Mn) – <0.05 mg/l
Hydrogen Sulphide (H2S) – 0.00 ppm

PWS™ BEV Series systems provide continuous rejection of toxins not removed by the RO process. Experience the difference yourself.

Granular Activated Carbon (GAC)
We have carefully selected a premium grade GAC for removal of organic contaminants including hydrocarbons, MTBE, and THMs. Our choice of GAC also removes all chlorine and helps ensure the correct pH of the product water.

Reverse Osmosis (RO)
We use an exceptional custom rolled Reverse Osmosis membrane offering a minimal rejection of 97% of total dissolved solids.

Deionization (DI)
Our unique four stage deionization module contains a proprietary blend of anionic plus cationic resins to capture any impurities not removed by the RO process. This ensures total removal of heavy metals, nitrates, nitrites, and radionuclides.

Production of drinking water meeting the rigorous Vincent (BEV) standards for purity and bio-compatibility is only achieved by integrating the proper technologies and highest quality materials. PWS™ BEV systems combine a carefully chosen grade of activated carbon with a custom rolled reverse osmosis membrane, followed by our unique four stage deionization module engineered to complement the RO membrane.

These technologies work together to produce pure, BEV quality water and completely eliminate all pollutants and contaminants such as salts, nitrates, heavy metals, chemicals, pesticides, and disease causing waterborne bacteria and virus. Our designs are proven to be the most efficient and technologically advanced systems in the world.

Your provider:
Bio-compatible water for everybody

Is my drinking water pure?

Probably not. In 1985, National Geographic reported, “Since 1950, we’ve disposed of six billion tons of toxic throwaways in on or the land, steadily increasing our potential exposure to chemicals (from contaminated tap water) that can cause cancer, birth defects, miscarriages, nerve disorders, blood disease, and damage to liver, kidneys or genes.”

And, the situation hasn’t improved. The National Institute of Health recently estimated our polluted environment accounts for 50% of cancer risk. There are more than 3,800 chemicals in daily use, many of which make their way into our water. Less than half of these have been tested for toxic effects in humans and less than 10% have been tested for toxicity to children. Chances are high that you won’t be aware of any of these chemicals in your next glass of water since practically all toxic contaminants are tasteless, odourless and invisible.

The only practical solution is to make your home drinking water safe at the point of use. The PWS™ BEV Series combines carbon adsorptions with a patented reverse osmosis/degasification process. When carefully matched with the finest components, these technologies are capable of producing BEV quality water—the purest and most biologically compatible drinking water.

What is BEV water?

BEV is an acronym for Bio-Electronic Vincent, an instrument used to measure the three key values of bio-compatible water as defined by Professor Louis-Claude Vincent of France. Professor Vincent was the chief hydrologist in France during the first half of the last century, where he had the opportunity to gather statistics showing disease tendencies and mortality rates for all the major cities across Europe. He correlated this information to the quality of the water those same populations were consuming. From his pioneering research he determined the optimal values for drinking water based upon the parameters of pH, rH2, and resistivity.

PH is a measure of acidity or alkalinity, i.e., the hydrogen ion concentration. Assuming the rH2 and resistivity values are within accepted values, the pH of bio-compatible water can range from 4.0 to 6.9. This range is allowed because when water is extremely pure, the pH value is easily affected since there are no other dissolved substances to buffer the solution. Regrettably, many municipal systems add lime to raise the pH between 7.3 and 8.0 in order to protect pipes from corrosion. In fact, many of the toxic compounds found in drinking water come from the distribution system itself. For example, chlorine and fluorides are intentionally added. Others are acquired as water flows through aging and leaking underground pipes, picking up traces of any number of metals including copper, nickel, chromium, even lead.

rH2 (a value derived via the Nernst Equation and a linear function of pH) provides an indication of electron potential in the fluid being tested. The range of rH2 is 0-42. When the rH2 value is below 28, the solution is considered... has an rH2 of 20 to 24. Unfortunately, the majority of chlorinated tap water has an rH2 value higher than 27.

Resistivity (the opposite of conductance) is used to measure the total amount of dissolved inorganic solids, or TDS. The resistivity value should be as high as possible, indicating an exceptionally low concentration of dissolved contaminants. The higher the resistivity value, the cleaner your water, and the better it is for you.

The Bio-Electronic Vincent (BEV) provides information never before available. It reveals not only if your water is pure, but also whether or not it meets bio-water standards. We constantly test water from our systems to ensure it meets the Vincent standards for purity and bio-compatibility.